K-THEORY AND DAG

1. K-THEORY

1.1. ∞ -categories.

- (1) Reminder on simplicial stuff
- (2) Definition of ∞ -categories (quasicategories)
- (3) Functors
- (4) Adjunctions
- (5) Mapping spaces
- (6) ∞ -category of spaces
- (7) Yoneda
- (8) Homotopy category
- (9) Equivalences in ∞ -categories
- (10) Equivalences between ∞ -categories
- (11) Maximal subgroupoid
- (12) Geometric realization
- (13) Limit constructions

1.2. Stable ∞ -categories.

- (1) Definition of stable ∞-categories [Lur09, Lur16a]
- (2) Triangulated structure on the homotopy category
- (3) Stabilization of ∞ -categories
- (4) Example: derived category of abelian category
- (5) K_0 of a stable ∞ -category

1.3. **Spectra.** See also [Gep19], [Lur16a], [YD19]

- (1) Definition of spectra and ring spectra
- (2) Stabilization
- (3) Mapping spectra in stable ∞ -categories
- (4) Compact objects
- (5) Mod_R , $\operatorname{Mod}_R^{\operatorname{perf}}$, $\operatorname{Mod}_R^{\operatorname{proj}}$ for ring spectra R
- (6) Connection to (simplicial) commutative rings

1.4. S_{\bullet} -construction and K_0 .

- (1) Waldhausen S_{\bullet} construction on pointed ∞ -category [Lur14, §14]
- (2) Example: K-theory of ring spectra via projective modules and via perfect modules [Lur14, §19]
- (3) Relation to K_0 ; K_0 by hand
- (4) Relation to $BGL(A)^+$
- (5) Example: K_0 (finite pointed spaces)

1.5. Reduction to K-theory of spectra. See also [BGT10]

- (1) Additivity theorem [Lur14, §17]
- (2) Invariance under stabilization
- (3) Ind-objects and idempotent completion [Lur14, §15], [Lur06]
- (4) $K(\operatorname{Ind}(\mathfrak{C}))$ for stable ∞ -categories \mathfrak{C}

Date: January 23, 2020.

(5) K-theory of pointed ∞ -categories with finite colimits in terms of K-theory of ring spectra $\operatorname{End}(C)$ [Lur14, §19]

1.6. Additive and Localizing invariants.

- (1) Presentable ∞ -cats
- (2) Verdier quotients of presentable stable ∞ -categories
- (3) (Split) exact sequences of stable ∞ -categories
- (4) Additive invariants [BGT10]
- (5) K-theory is the universal additive invariant

1.7. Non-connective K-theory.

- (1) Localizing invariants
- (2) Non-connective K-theory
- (3) Universal property
- (4) K-theory of open immersion of schemes
- (5) Weibel's conjecture
- (6) Cofinality theorem and connection to connective K-theory

1.8. Connections to classical K-theory.

- (1) Exact 1-categories (Or Waldhausen, depending on what is easier to connect to the previous)
- (2) K-theory of exact 1-categories
- (3) Theorem of the heart
- (4) Classical results: Excision, Mayer-Vietoris, ... [Wei13, §5]

2. DAG

2.1. Higher topos theory.

- (1) Grothendieck topologies
- (2) ∞ -sites
- (3) Left-exact localization functors
- (4) Groupoid objects
- (5) ∞-topoi
- (6) Example of ∞ -topoi: ∞ -sheaves on ∞ -sites
- (7) ∞ -stacks on Sh(T) are equivalently ∞ -sheaves on T, for ∞ -topoi T

2.2. **Derived schemes.** We can follow [Kha16], [Mat12]

- (1) Derived rings, the associated E_{∞} -rings, the underlying discrete rings
- (2) Open immersions of derived affine schemes
- (3) Zariski topology on sRing
- (4) Open immersions of Zariski stacks
- (5) Derived schemes

2.3. Derived Stacks. We can follow [Kha16], [Mat12]

- (1) Cotangent complex
- (2) Étale topology
- (3) Derived étale stacks
- (4) Quasi-coherent modules on stacks: connective and non-connective, the case of derived schemes
- (5) Smooth morphisms of derived schemes
- (6) Derived Artin stacks

2.4. Perfect complexes and K-theory of stacks.

- (1) Quasi-coherent sheaves on stacks, Artin stacks, schemes
- (2) The adjunction $f^* \dashv f_*$ for a map of stacks $f: \mathcal{X} \to \mathcal{Y}$
- (3) Perfect complexes on derived stacks [BZFN10], [Lur16b], Khan lecture notes
- (4) Symmetric monoidal ∞-categories: dualizable objects
- (5) Compact objects
- (6) The relations between perfect complexes, dualizable object and compact object in QCoh(X)
- (7) f^* preserves perfect complexes
- (8) $\operatorname{Perf}(X)$ is stable ∞ -cat

2.5. K-theory of projective bundles.

- (1) Locally free modules of finite rank
- (2) Projective bundles on stacks and Serre's twisting sheaf [Kha18b, §6]
- (3) Semi-orthogonal decompositions of stable ∞-categories [Kha18b], [YD19]
- (4) Additive invariants 'split' semi-orthogonal decompositions [Kha18b, Lem. 2.3.3]
- (5) Semi-orthogonal decomposition on $Perf(\mathbb{P}(\mathcal{E}))$

2.6. K-theory of blow-ups.

- (1) Quasi-smooth immersions of derived Artin stacks
- (2) Derived blow-ups in quasi-smooth centers
- (3) Semi-orthogonal decomposition on $\operatorname{Perf}(\operatorname{Bl}_Z X)$

2.7. Zariski Descent. See [Kha18b, §3,4]

- (1) Quasi-compact open immersions of derived schemes
- (2) qcqs derived schemes
- (3) Perfect complexes that vanish on open subsets
- (4) Zariski descent for squares
- (5) Zariski descent for Čech covers

2.8. Grothendieck-Riemann-Roch I. See [Kha18a, §9]

- (1) Derived Sym and Λ
- (2) Additive K-theory (earlier?)
- (3) λ -rings, γ -operations, associated grading
- (4) λ -ring structure on $K_0(R) = K_0^{\oplus}(\operatorname{Mod}_R^{\operatorname{proj}})$
- (5) Global resolution property
- (6) Globalization of λ -ring structure to $K_0(X)$ for derived scheme X

2.9. Grothendieck-Riemann-Roch II. See [Kha18a, §10]

(1) Formulation of GRR-theorem for derived schemes

References

- [BGT10] Andrew J. Blumberg, David Gepner, and Goncalo Tabuada. A universal characterization of higher algebraic k-theory, 2010.
- [BZFN10] David Ben-Zvi, John Francis, and David Nadler. Integral transforms and drinfeld centers in derived algebraic geometry. Journal of the American Mathematical Society, 23(4):909–966, 2010.
- [Gep19] David Gepner. An introduction to higher categorical algebra. arXiv preprint arXiv:1907.02904, 2019.
- [Kha16] Adeel Khan. Motivic homotopy theory in derived algebraic geometry. PhD thesis, 2016.
- [Kha18a] Adeel Khan. The Grothendieck-Riemann-Roch theorem . Lecture notes, 2018.
- [Kha18b] Adeel A. Khan. Descent by quasi-smooth blow-ups in algebraic k-theory, 2018.
- [Lur06] J. Lurie. Higher Topos Theory. Princeton University Press, August 2006.

- [Lur09] Jacob Lurie. Derived algebraic geometry I: stable ∞ -categories. $Preprint.\ http://arxiv.\ org/abs/math/0608228,\ 2009.$
- $[{\rm Lur} 14] \qquad {\rm Jacob\ Lurie.\ Algebraic\ K-Theory\ and\ Manifold\ Topology}.\ {\it Lecture\ notes},\, 2014.$
- [Lur16a] Jacob Lurie. Higher algebra. 2014. Preprint, available at http://www. math. harvard. $edu/\tilde{\ }$ lurie, 2016.
- $[Lur16b] \quad \mbox{Jacob Lurie. Spectral algebraic geometry. $Preprint$, available at www. math. harvard.} \\ edu/~\ lurie/papers/SAG-rootfile. pdf, 2016.$
- [Mat12] Akhil Mathew. Simplicial commutative rings, 2012.
- [Wei13] Charles A Weibel. The K-book: An introduction to algebraic K-theory, volume 145. American Mathematical Society Providence, RI, 2013.
- $\mbox{[YD19]}\mbox{ }\mbox{ }\mbox{Lucy Yang and Jack Davies.}$ Algebraic K-theory European Talbot 2019 notes . Lecture notes, 2019.